# AtCoder Beginner Contest 186 Editorial
Video Editorial (opens new window)
# Problem A - Brick (opens new window)
The answer is .
Time complexity is .
Code (Python 3)
n, w = map(int, input().split())
print(n // w)
1
2
2
# Problem B - Blocks on Grid (opens new window)
The answer is .
Time complexity is .
Code (Python 3)
def read_int():
return int(input())
def read_ints():
return map(int, input().split(' '))
h, w = read_ints()
lo = 100
s = 0
for i in range(h):
row = list(read_ints())
lo = min(lo, min(row))
s += sum(row)
print(s - lo * h * w)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Problem C - Unlucky 7 (opens new window)
Just enumerate and check each number.
Time complexity is .
Code (Python 3)
n = int(input())
ans = 0
for i in range(1, n + 1):
if '7' in str(i) or '7' in oct(i):
continue
ans += 1
print(ans)
1
2
3
4
5
6
7
2
3
4
5
6
7
# Problem D - Sum of difference (opens new window)
Note that:
We can first sort the array and then calculate the sum using prefix sum.
Time complexity is .
Code (Python 3)
n = int(input())
a = list(map(int, input().split()))
a.sort()
r = sum(a)
ans = 0
l = 0
for i in range(n):
r -= a[i]
ans += r - (n - 1 - i) * a[i] + i * a[i] - l
l += a[i]
print(ans // 2)
1
2
3
4
5
6
7
8
9
10
11
2
3
4
5
6
7
8
9
10
11
# Problem E - Throne (opens new window)
Denote as the number of moves, and as the number of loops.
So,
We can first use extended GCD on and to get,
If cannot be divided by , we have no answer. Otherwise, we multiply both sides with ,
Then we use to minimize and thus get the answer .
Time complexity is .
Code (Python 3)
def exgcd(a, b):
s = 0
olds = 1
t = 1
oldt = 0
r = b
oldr = a
while r:
q = oldr // r
oldr, r = r, oldr-q*r
olds, s = s, olds-q*s
oldt, t = t, oldt-q*t
return oldr, olds, oldt
t = int(input())
for _ in range(t):
n, s, k = map(int, input().split())
g, a, b = exgcd(n, k)
if s % g != 0:
print(-1)
else:
a *= s // g
b *= s // g
lcm = n * k // g
print(((a * n - s) % lcm + lcm) % lcm // k)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Problem F - Rook on Grid (opens new window)
First consider right-down routes, then down-right routes. There might be duplicates, which can be handled with data structures such as Fenwick tree or Balanced Binary Search Tree.
Time complexity is .
Code (C++)
#include <algorithm>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <iostream>
#include <vector>
using namespace __gnu_pbds;
using namespace std;
typedef long long ll;
typedef tree<int, null_type, less_equal<>, rb_tree_tag,
tree_order_statistics_node_update>
indexed_set;
int main() {
int h, w, m;
cin >> h >> w >> m;
vector<int> x(m), y(m);
vector<int> hlimit(h + 1, w), wlimit(w + 1, h);
for (int i = 0; i < m; ++i) {
cin >> x[i] >> y[i];
hlimit[x[i]] = min(hlimit[x[i]], y[i] - 1);
wlimit[y[i]] = min(wlimit[y[i]], x[i] - 1);
}
ll ans = 0;
for (int i = 1; i <= hlimit[1]; ++i)
ans += wlimit[i];
vector<pair<int, int>> v;
for (int i = 2; i <= wlimit[1]; ++i)
v.emplace_back(hlimit[i], i);
sort(v.begin(), v.end());
indexed_set s;
int r = 0;
for (auto [hl, i] : v) {
while (r < hl && r < hlimit[1])
s.insert(wlimit[++r]);
int dup = s.size() - s.order_of_key(i - 1);
ans += hlimit[i] - dup;
}
cout << ans << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39